Nov 142016

HP/Compaq nx6310/nc6320 logoA good while back, I got a free notebook from [The_Plague]German flag, a HP/Compaq nx6310[1][2] which he kinda pulled out of the trash at his company. It’s not exactly “Thinkpad T23” material, but it’s a pretty solid, well-built machine with a good keyboard. I’ve been using the thing as an operating system testbed for a while (Linux, ReactOS, Haiku OS, OpenBSD, Dragonfly BSD, and finally: FreeBSD UNIX). After settling for FreeBSD the machine clearly showed its limitations though, the most problematic being imposed by the very low-end i940GML chipset. That one has limited the machine to a single processor core and a 533MHz data rate FSB.

I did give the machine a Core Duo T2450, but switching dual core on in the BIOS results in a lockup at POST time. Also, the chipset cannot use dual-channel DDR-II and limits the user to 2GiB of memory, making the use of a 64-bit processor rather pointless. Which turned out to be bad, because some code doesn’t even provide full functionality for 32-bit anymore, like x265, which dropped deep color support on 32-bit architectures.

But now, The_Plague pulled another one out of the trash, it’s basically the exact same machine, but a higher-end model, the nc6320. This one has an i945GM chipset, which means dual core support, FSB667 and 4GiB dual-channel RAM capability! It came with a Core 2 Duo T5600 @ 1.83GHz with 2MiB L2 cache. I ordered the largest possible chip for this box from ebay Hong Kong, so now it has a Core 2 Duo T7600 @ 2.33GHz with 4MiB L2 cache. Also, 2×2=4GiB of DDR-II/667 CL4 are on their way already, together with a 12-cell secondary monster battery!

And of course, FreeBSD UNIX again, in its brand new version 11.0-RELEASE:

HP/Compaq nc6320 running FreeBSD 11.0 UNIX

HP/Compaq nc6320 running FreeBSD 11.0 UNIX (click to enlarge)

The CPU upgrade is actually even noticeable when browsing the web, lots of resource-hungry Javascript and CSS3, you know. Luckily, Chromium supports hardware acceleration on the Intel GMA950 GPU on FreeBSD, as the OS comes with a kernel modesetting compliant driver for almost all integrated Intel graphics chips. It’s too slow to do the rasterization stage on the GPU, but it still helps.

Once again, it shall serve mostly as a meeting and sysadmin machine, with a little bit of private-use-fun added on top. Let’s have a look at the software! Oh and by the way, I decided to make the screenshots 8-bit .png images, so some of them will look a bit bad. But still better+smaller than JPEG for that purpose:

Running screenfetch on the nc6320

Running screenfetch on the nc6320 (click to enlarge)

$ screenfetch is showing us some details about the machine, which also makes it clear that everything is “Tokisaki Kurumi”-themed. Since there’s a lot of red color on that girls’ garments it seems at least somewhat fitting for a FreeBSD machine.

Chromium with FVD Speed Dial

Chromium with FVD Speed Dial (click to enlarge)

I’m a [Vivaldi] fan personally, but that browser isn’t available on any BSD yet, so I installed a few extensions to make Chromium work somewhat like Vivaldi; The most important part being the static FVD speed dial you can see above. What you can’t see here are the other extensions that followed it: AdBlockPlus and Ghostery. I hear there are better/faster solutions than ABP for ad blocking these days however, so maybe I’ll revise that.

IBM Lotus Notes via wine 1.8

IBM Lotus Notes 6.5.1 via 32-bit wine 1.8.4 (click to enlarge)

Also, for work I would sometimes need IBM Lotus Notes, as it’s our Universities’ groupware solution (think of that what you will). While I couldn’t get the Linux version to run, our Domino servers still accept connections from older clients, so it’s Lotus Notes 6.5.1 running under a 32-bit [wine], which is a solution IBM officially recommended for running the software on Linux/UNIX a few years ago. And yeah, it still works. And if you have Windows software wine can’t cope with?

XP x64 via VirtualBox on FreeBSD

XP x64 via VirtualBox on FreeBSD (click to enlarge)

For anything that wine can’t handle, the VirtualBox port kicks in, as we can see here. Together with the CPUs VT-x extension and the guest tools, virtualizing Windows on FreeBSD UNIX works relatively well. Not all features are there (like USB passthrough), but it works ok for me. Will need a Windows 7 VM as well I think.

More stuff:

Communicating on FreeBSD

Communicating on FreeBSD (parts are censored, click to enlarge)

One important part is communication! Luckily, there is a version of licq in the ports tree now. It builds well together with its Qt4 UI, so no complaints there. Hexchat for IRC access is also available, but the tricky part was Skype; Not that I really need it, but I wanted to have the linuxulator up and running as well! For those of you who don’t know what the “linuxulator” is: It’s a series of kernel modules that extend FreeBSDs kernel with parts of the Linux kernel interface. On top of that, you can pull parts of Fedora 10 or CentOS 6.8 or some CentOS 7 Linux userspace components from the package servers. Together with the kernel modules those form a kind of runtime environment for executing Linux programs – Skype 4.3 in this case! So I have both wine and linuxulator ready for action, and with it access to ICQ, Jabber, MSN, IRC and Skype. Now, what about multimedia?

Multimedia on FreeBSD

smplayer and xmms on FreeBSD, unfortunately the 8-bit color is a bit too noticeable for this screenshot, my apologies (click to enlarge)

This is a part where the upgraded processor also helps. Here we can see (s)mplayer play the last episode of the Anime Hanayamata in taxing 2.5Mbit H.265/HEVC encoding, paired with AAC-LC audio. The Core 2 Duo T5600 had some issues with this, but the faster T7600 shows now problems. Additionally, xmms is playing a Commodore 64 SID tune using libsidplay2 and the reSID engine. xmms comes with a lot of funny plugins from the FreeBSD ports tree for Gameboy tunes or NES tunes, but the C64 one you need to compile for yourself. Not too hard though, you can fetch libsidplay2 and reSID from packages beforehand to make things easier! What else?


ioquake3, a cleaned up version of the Quake III Arena source code, here in its 64-bit FreeBSD build (click to enlarge)

A pretty fun part: Playing the native Quake3 port [ioquake3] in 64-bit, for whenever you just need to shoot something to blow off some steam. ;) I have to say, I had to tweak it quite a bit to run fluently on the WVA 1400×1050 display of this book given the weak GMA950 GPU, but it runs “rather ok” now. ioquake3 is also available for Windows, OSX and Linux by the way, including a more advanced OpenGL 2 renderer, which gives users access to some advanced graphical effects. And if I get bored by that…

HakuNeko Manga ripper and qComicbook

HakuNeko Manga ripper and qComicbook showing some sweet girls love! (click to enlarge)

Once again, fixing up HakuNekos’ build system and C++ code to work with FreeBSD properly took some time. Unfortunately there is no port for it yet (and I’m too stupid/lazy to create one), so you have to fix it by hand. Lots of replacing sed invocations with gsed, find with gfind etc. and the OS #ifdef parts, which need to be changed in several .cpp files, here’s an example from MangaConnector.cpp:

  1. #ifdef __LINUX__
  2. wxString MCEntry::invalidFileCharacters = wxT("/\r\n\t");
  3. endif

Something like that needs to turn into this to compile on FreeBSD, otherwise you’ll end up with a HakuNeko that can’t do shit (it’ll still compile and run, but like I said, it’d be devoid of function):

  1. #if defined __LINUX__ || __FreeBSD__
  2. wxString MCEntry::invalidFileCharacters = wxT("/\r\n\t");
  3. endif

This is true for the latest version 1.4.1 as well. I guess the modifications should also apply to other operating systems by adding things like __OpenBSD__ or similar.

Now all that’s left is to wait for that massive 12C battery, the RAM capacity+speed upgrade and some FreeBSD case sticker that I ordered from [] (hint: That’s a referral URL, it’s supposed to give you some $5 coupon upon ordering, I hope it works). Upon my order, a small part was donated to the LLVM project – very fitting, given that I’ve used clang/llvm a lot to compile stuff on FreeBSD as of late. :)

FreeBSD case sticker (preview)

This is what it’s supposed to look like, and it’s going to replace the current Windows XP+Vista sticker

I hope it’ll look as good in real life! :) Ah, I think I’m gonna have a lot of fun with that old piece of junk. ;)

Ah, and thanks fly out to The_Plague, who saved this laptop from the trash bin and gave it to me for free! Prost!

Edit: And the memory is here, two G.Skill “performance” modules doing 4-4-4 latencies at 667MHz data rate, replacing a single Samsung module running 5-5-5. Now I was interested in how much going from single channel CL5 to dual channel CL4 would really affect performance. Let’s just say, it didn’t do too much for CPU processes. However, the effect on the integrated GMA950 GPU (using shared system memory!) was amazing. It seems the graphics chip was held back a lot by the memory interface! Let’s have a quick look at Quake III Arena performance using a quickly recorded demo just for this purpose (ioquake3 can’t play old Quake III Arena demos like the “001” demo):

  • ioquake3 1.36, single channel DDR-II/667 CL5:
  • 30.6fps
  • ioquake3 1.36, dual channel DDR-II/667 CL4:
  • 41.2fps

Roughly +35%!!

Tests were run three times, then three more times after a reboot. After that, an average was taken. For ioquake3 this wouldn’t even have been necessary though, as the results were extremely consistent. It’s amazing how much the added memory speed really affects the game engine! I rebooted and re-ran the tests several times because I couldn’t believe in that massive boost in performance, but it’s actually true and fully reproducible! This reminds me of how well modern AMD APU graphics chips scale with main memory speed and it explains why people were asking for quad-channel DDR4 on those Kaveri APU chips. Its built-in Radeons would’ve probably loved the added bandwidth!

I also kinda felt that browsing web sites got a lot more smooth using Chromium with most of its GPU acceleration turned on. So I tried the graphics-centric browser test [Motionmark] to put that to the test. Parts of the results were inconclusive, but let’s have a look first:

  • Motionmark 1.0 (medium screen profile), single channel DDR-II/667 CL5:
  • Overall result: 13.85 ±22.24%
  • Multiply: 119.26 ±2.95%
  • Canvas Arcs: 19.04 ±68.48%
  • Leaves: 3.00 ±133.33%
  • Paths: 85.30 ±6.57%
  • Canvas Lines: 1.00 ±0.00%
  • Focus: 1.76 ±5.22%
  • Images: 40.58 ±2.56%
  • Design: 18.89 ±8.00%
  • Suits: 24.00 ±37.50%
  • Motionmark 1.0 (medium screen profile), dual channel DDR-II/667 CL4:
  • Overall result: 22.47 ±15.93%
  • Multiply: 124.55 ±1.60%
  • Canvas Arcs: 26.00 ±138.46%
  • Leaves: 65.90 ±16.93%
  • Paths: 37.00 ±16.89%
  • Canvas Lines: 1.00 ±0.00%
  • Focus: 2.00 ±50.00%
  • Images: 41.58 ±3.59%
  • Design: 24.49 ±2.35%
  • Suits: 90.65 ±13.55%

Now first things first: This was just my first pick for any kind of graphics-heavy browser benchmark. I thought I needed something that would make the browser do a lot of stuff on the GPU, given that hardware acceleration was almost fully enabled on FreeBSD UNIX + Chromium + GMA950. However, after repeated runs it showed that the variance was just far too high on the following tests: Leaves, Paths, Suits. Those would also mess up the overall score. The ones that showed consistent performance were: Multiply, Canvas Arcs, Canvas Lines, Focus, Images, Design, so we should focus on those. Well, not all of those tests show promising results (Multiply, Canvas Lines), but some clearly do. It seems my feeling that parts of CSS3 etc. had gotten faster after the memory upgrade was spot-on!

Not bad, not bad at all! And tomorrow morning, the [x264 benchmark] will also have finished, showing how much a classic CPU-heavy task would profit from that upgrade (probably not much, but we’ll see tomorrow).

Edit 2: And here is the rest. Like I thought, the memory upgrade had only minimal impact on CPU performance:

  • x264 benchmark, single channel DDR-II/667 CL5:
  • Runtime: 04:40:08.621
  • x264 benchmark, dual channel DDR-II/667 CL4:
  • Runtime: 04:38:23.851

So yeah it’s faster. But only by a meager +0.62%. Completely negligible. But it’s still a good upgrade given the GPU performance boost and the fact that I can now use more memory for virtual machines. :)

Ah, and here’s the 12-cell ultra capacity battery, which gives me a total of 18 cells in conjunction with the 6-cell primary battery:

Nice hardware actually, you can check it’s charge (roughly) with a button and a 4-LED display, and it has it’s own charging plug. What surprised me most though was this:

$ hwstat | grep -i -e "serial number" -i -e battery
[ACPI Battery (sysctl)]
        Serial number:                  00411 2006/10/12
        Serial number:                  00001 2016/07/29

That probably explains how a still sealed battery could come with a ~25% pre-charge. Manufactured in July 2016, wow. And that for a notebook that’s 10 years old? Ok, it’s an aftermarket battery by [GRS], but that’s just damn fine still! With that I’ll surely have enough battery runtime to make it through longer meetings as well! :)

Edit 3: And today I used the notebook for a sysadmin task, helping our lead developer in debugging a weird problem in a Java-based student exam submission and evaluation system of ours at work. I suspected that the new CuPPIX (=KNOPPIX derivative) distribution I built for this was to blame, but it turned out to be a faulty Java library handling MySQL database access, hence crashing our server software under high parallel loads. In any case, I had the nc6320 with me during the entire morning up until 12:30 or so, walking away with a total charge of 49% left after the developer had fixed the problem. Not stellar given a total of 18 cells, but definitely good enough for me! :)

Edit 4: And my FreeBSD sticker from unixstickers is finally here! They even gave me a bunch of random free stickers to go with it! I gave those to some colleagues for their kids. ;) And here it is:

FreeBSD sticker from

There was a Windows Vista/XP sticker before, now it shows some UNIX love! (click to enlarge)

The sticker shows some pretty good quality as well, nice stuff! :)

Jun 272015

Corsair Logo #2This is just a minor update after [part 2], but anyway. My old workstation (the one I’m migrating away from) just broke down a few days ago, so I had to do something, and quickly. Since I still don’t have any disks for my new RAID-6, I had to pull the existing RAID array from my old box and attach it to my new workstation in a hurry. It does look quite ugly too, with the RAID lying around on the table beside an open Lian Li PC-A79B. This is not how it was supposed to be, but well… In the meantime I found out that it was my Tagan Piperock 1300W power supply which broke down (Built by Topower by the way). Sad, because I liked it for its sturdy metal screw-on modular plugs, but well. So the machine now sits in its final location, it just doesn’t look too good at the moment:

"Helios" RAID-6 array emergency migration

Now the new machine has to host the old “Helios” RAID-6 array. Not quite as planned (click to enlarge).

In any case, I wanted to play around with that new Corsair “Professional Series Platinum AX1200i” of mine, which is a fully digital power supply unit featuring an I²C port. With that, you can hook it up to Corsairs Link [Commander], or you can use the dongle provided with the unit and hook it up to an internal USB header on your mainboard. Here’s a crop of a photo previously shown, this is the dongle:

The Corsair Link dongle

The Corsair Link dongle.

Now what this actually is, is a [Silicon Labs] – or Silabs in short – I²C to [USBXPress] bridge chip. So it’s not using the same USB HID device class of the Link Commander, but a completely different protocol, which is also why we’re tied to using the Corsair Link software. The free software project [CorsairLinkPlusPlus] won’t work with it at all as it supports only the Link Commander itself.

Having said that, I can’t use the Corsair Link software – which uses .Net 4.5 – on XP x64, it just won’t work on the old OS. The drivers that come with the device though are from Silabs and DO support XP and XP x64. The USB vendor ID was changed from Silabs to Corsair though, so it’s not 10CE:1C00, but 1B1C:1C00, making it impossible to install original Silabs drivers. But that’s ok, what Corsair’s shipping with the power supply works just as well.

You may not wish to install the whole Corsair Link software on XP just to get the drivers though. So I have isolated the drivers from the package for you to install them separately. The Hydro water cooler driver is also provided, but you don’t need it if it’s just for a power supply like in my case:

But, while you can install the dongle, you can’t talk to it, lacking the userland software for that. Now when I said “how to run Corsair Link on XP x64” in the title, I have to admit I was lying a bit. Because what I did was to virtualize the dongle using Oracle VirtualBox 4.2.26 and then run the Corsair Link software on a Windows 7 x64 virtual machine. Now, before launching that, the XP x64 host systems device manager will show this:

Corsair/Silabs dongle installed on XP x64

Corsair/Silabs dongle installed on XP x64.

Just so it’s handled automatically for every boot of my Windows 7 VM, I created a USB device filter in the virtual machines’ settings:

VirtualBox Corsair Link Filter

VirtualBox USB filter for the Corsair Link dongle.

Now when you start up the VM, VirtualBox will grab the device and replace it with a device called “VirtualBox USB”, thus making it unavailable on the host machine. Just install Corsair Link in the VM, and everything will work nicely:

Corsair Link, virtualized

With the USBXPress dongle virtualized properly, we can run Corsair Link on a Windows 7 VM, controlling the host machines’ power supply (Click to enlarge).

Many have described the software as buggy and crappy, but for me it gets the job done. All I wanted was to change the behavior of the unit, disabling its passive mode at low loads. While a nice feature, the internal thermal probe reports temperatures of up to 60°C at 300W load with the fan sitting still, and I don’t quite like that. I don’t see why it is needed to artificially accelerate the aging process of the PSUs electrolytic capacitors like that, so I set the fan speed to 40%, resulting in slightly short of 800rpm. Very silent, and good enough even for high loads. I now get down to 28-35°C depending on ambient temperatures without perceiving any additional noise. It may reach 40°C on really hot days I guess, but that’s a lot better than 60°C.

Just sad that we can’t define a complete custom fan curve for this unit, based on load or temperature readings. It’s possible with system fans when working with the Link Commander, but not for this one.

Naturally, virtualization also works if you’re on Linux or BSD UNIX or Solaris or whatever. It’s cumbersome, yes, but if you need it only to tell the PSUs firmware to keep the fan spinning, it’s ok. You don’t need to keep the software running, that’s the sweet part. The settings will be stored in the power supplys’ firmware directly.

Only downside is: You need a Windows Vista/7 or newer license for that of course. But maybe we’ll see some free software in the future, people are working on it, that much’s for sure!

Now let’s hope part 4 of this log will be my new hard disks, because I’m really starting to run low on disk space already…

Edit: Part 4 should now be ready, because my new 6TB SAS drives are here. However, instead it turned out to be quite the disaster, which is why [it’s part 3½ instead]. There are some preliminary benchmarks for you to see however, at least something. ;)